Reactions of triene-conjugated diazo-compounds: reaction paths from o-(1,3 -dienyl)aryldiazomethanes to $\mathbf{3 , 8}$-methano-1,2diazocines and to pyrrolo[2,1-a]phthalazines via intramolecular ($3+2$) and 1,1-cycloaddition reactions

John T. Sharp,* Paul Wilson, Simon Parsons and Robert O. Gould
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ

Received (in Cambridge, UK) 2nd December 1999, Accepted 23rd February 2000

The reaction paths followed by the triene-conjugated diazo-compounds 7 , which have α, β aromatic and $\gamma, \delta ; \varepsilon, \zeta$ olefinic unsaturation, depend strongly on the nature of the substituents R^{1} and R^{2}. Those with $\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}, 7 \mathrm{a}-\mathbf{e}$, react at room temperature via an intramolecular $(3+2)$ cycloaddition reaction of unprecedented regioselectivity to give the bridged benzodiazocines $18 \mathrm{a}-\mathrm{e}$ in high yield. Those with $\mathrm{R}^{1}=\mathrm{Me}$ and $\mathrm{R}^{2}=\mathrm{Ph}, 7 \mathrm{f}$ and $\mathbf{7 g}$, react at $80^{\circ} \mathrm{C}$ to give the hydrocarbons 19f,g and, via new chemistry, the pyrrolo[2,1-a]phthalazines 24f,g. The structures of compounds 18a, 19a and $\mathbf{2 4 f}$ have been determined by X-ray crystallography.

Introduction

We have recently reported the first investigations into the reactions of triene-conjugated 1,3-dipolar intermediates. This work ${ }^{1}$ was done on nitrile ylides 1 and $\mathbf{4}$ which, with either a cis or trans γ, δ bond, react to give 1,4-prop[2]enoisoquinolines 3. The first step in both cases is a stereospecific 1,1-cycloaddition reaction to give cyclopropa[c]isoquinolines in which the cis reactants $\mathbf{1}$ give the endo isomers 2 and the trans reactants $\mathbf{4}$ give the exo isomers 5 (Scheme 1). The endo isomers rearrange spontaneously at $0^{\circ} \mathrm{C}$ via an aza-Cope rearrangement to give $\mathbf{3}$, while the latter, $\mathbf{5}$, are stable at room temperature because of their stereostructure but isomerise on heating to give $\mathbf{3}$ via $\mathbf{6}$.

This work is of interest because it provides an easy route to the bridged isoquinoline system 3 which has the basic skeleton of the isopavine alkaloids and because the methodology could, in principle, be extended to similar non-natural analogues which incorporate other heteroatoms. One way of achieving this would be to utilise other 1,3-dipolar moieties in place of the nitrile ylide and the objective of the work reported here was to study the reactions of the analogous triene-conjugated diazocompounds 7. As in the cases of $\mathbf{1}$ and $\mathbf{4}$, many possible intra-
molecular 1,3-dipolar reaction paths are possible via either electrocyclisation or cycloaddition reactions but here there is the added possibility of carbene reactions via loss of nitrogen. Diazo compounds are formally similar to nitrile ylides in structure and in many aspects of their chemistry and the reactions of 7 could in principle lead to $\mathbf{9}$, the diaza analogue of $\mathbf{3}$, via $\mathbf{8}$ (Scheme 2). Diazo compounds are known to react in some 1,1cycloaddition reactions ${ }^{2 a-c}$ but in general this is a less favoured mode of reaction than it is for nitrile ylides and nitrile imines. Thus, in the reactions of the diene-conjugated systems $\mathbf{1 0}$ to give 2,3-benzodiazepines $\mathbf{1 2},{ }^{3}$ species such as $\mathbf{1 3}$ have never been detected although they could in principle be in equilibrium with the quinonoid intermediates 11, and indeed studying the chemistry of 7 would provide a test for the accessibility of $\mathbf{1 3}$. At the outset therefore it was impossible to make an accurate prediction of the preferred reaction path for 7 and so an exploratory investigation was undertaken.

Results and discussion

All the work in this paper is concerned with the reactions of the γ, δ-cis triene systems 7 (substituents identified in Table 1). They

Table 1 Identification of substituents for structures 7, 15-19, 24

Compound							R^{1}	R^{2}	R^{3}	R^{4}
7 a	15a	16a	17a	18a	19a				H	Ph
7b	15b	16b	17b	18b					H	H
7c	15c	16c	17e	18c					H	Me
7d	15d	16d	17d	18d					Me	Me
7 C	15e	16e	17e	18e					H	$\mathrm{CO}_{2} \mathrm{Me}$
7 f	15 f	16 f	17f		19 f	24g	Me	Ph	H	Ph
7 g	15g	16 g	17g		19g	24g	Me	Ph	H	$p-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$
7h	15h	16h	17h		19h				H,	Z mixture)

10
11
12

13
Scheme 2

7
Scheme 3 Reagents: i, $\mathrm{R}^{3} \mathrm{R}^{4} \mathrm{CH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{X}^{-}$or $\mathrm{R}^{3} \mathrm{R}^{4} \mathrm{CH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2} /$ base; ii, 2-formylphenylboronic acid/ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{Na}_{2} \mathrm{CO}_{3}$; iii, $\mathrm{TsNHNH}_{2} /$ H^{+}; iv, Na salt in DME.
were generated, as in earlier work, ${ }^{3}$ by the thermal decomposition of the tosylhydrazone sodium salts $\mathbf{1 7}$ under aprotic conditions in 1,2-dimethoxyethane (DME) as solvent (Scheme 3). The aldehydes 16 were prepared by Suzuki coupling reactions of 2-formylphenylboronic acid with the appropriate
bromodiene 15. The bromodienes were prepared via Arnold's bromoformylation reaction ${ }^{4 a, b}$ of ketones to give the bromoacryl aldehydes 14 and subsequent Wittig or WadsworthEmmons olefination.
The reaction paths followed by the diazo-compounds were split clearly into two types, that taken by reactants $7 \mathrm{a}-\mathbf{e}$ which have a cyclopentyl ring fused at the γ, δ position, shown in Scheme 4, and that followed by the others, shown in Scheme 5.

Scheme 4
The reactants $7 \mathrm{a}-\mathrm{e}$ gave products of three types, the bridged benzodiazocines 18 and the hydrocarbons 19, and, for 7e only, the indazole 20. The product yields are shown in Table 2. It can

Table 2 Product yields

		Product yields (\%)			
Reactant	Temp. $/{ }^{\circ} \mathrm{C}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 4}$
$\mathbf{1 7 a}$	80	27	46		
$\mathbf{1 7 a}$	RT	67	19		
$\mathbf{1 7 b}$	RT	86			
$\mathbf{1 7 c}$	RT	75			
$\mathbf{1 7 d}$	RT	88		59	
$\mathbf{1 7 e}$	RT	28	54		22
$\mathbf{1 7 f}$	RT/80		49		21
$\mathbf{1 7 g}$	RT/80		59		
$\mathbf{1 7 h}$	80				

be seen that the bridged benzodiazocines $\mathbf{1 8}$ were the sole or major products from $7 \mathbf{7 a - d}$ when the reactions were carried out at room temperature. These represent a new heterocyclic system and the identity of compound 18a was confirmed by X-ray crystallography (Fig. 1). The structures of $\mathbf{1 8 b} \mathbf{e}$ followed from comparison of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and their mass spectra with those of $\mathbf{1 8 a}$. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 8 a}-\mathbf{c}, \mathbf{e}$ were at first sight unusual in that no coupling was seen between the protons on $\mathrm{C}-4$ and $\mathrm{C}-7$ and the bridgehead proton trans to the azo group $\left(\mathrm{R}^{3}=\mathrm{H}\right)$ but in $\mathbf{1 8 b}\left(\mathrm{R}^{3}, \mathrm{R}^{4}=\mathrm{H}\right)$ the other bridgehead proton was coupled strongly ($J 7-8 \mathrm{~Hz}$). This confirms that in 18c,e the hydrogen atoms at C-4 and C-12 have the same relative stereochemistry as in 18a (Fig. 1). The first reaction to generate $7 \mathbf{a}$ was carried out by heating the tosylhydrazone salt at $c a .80^{\circ} \mathrm{C}$ in DME as solvent, i.e. at the usual temperature required to induce thermal decomposition of the salt. This gave 18a (27%) and 19a (46%), whose structure was also confirmed by X-ray crystallography (Fig. 2). In principle the latter could be formed either by loss of nitrogen from 7 a followed by intramolecular carbene addition to the terminal double bond, or via the extrusion of nitrogen from 18a. The viability of the second pathway was shown by a control experiment, monitored by NMR, which showed that 18a readily extrudes nitrogen at this temperature to give 19a as the only product. In an attempt to minimise this thermolysis the reaction temperature for the decomposition of the tosylhydrazone salt was progressively reduced and, surprisingly, it was found that the reaction was complete in $c a .48 \mathrm{~h}$ at room temperature to give 18a in enhanced yield (67%). It is most unusual for a tosylhydrazone salt to decompose at this low temperature and its occurrence must be ascribed primarily to steric acceleration due to the bulky ortho substituent and perhaps also to the effect of the diene conjugation in stabilising the resulting diazo-

Fig. 1 Crystal structure of compound 18a.

Fig. 2 Crystal structure of compound 19a.
compound. In support of this argument it is notable that the decomposition temperature of trisylhydrazone salts ${ }^{5}$ (trisyl $=$ 2,4,6-triisopropylphenylsulfonyl) is markedly reduced by the
bulk of the 2,4,6-triisopropylbenzenesulfonyl group. The subsequent generation of $\mathbf{7 b}-\mathbf{d}$ was carried out at room temperature and these reactions gave $\mathbf{1 8 b}-\mathbf{d}$ as the only isolated products in high yields (Table 2). In all of these cases the diazocompounds $7 \mathbf{a}-\mathbf{e}$ were not present in detectable concentration during the reaction but reacted as they were formed.
The most straightforward interpretation of these results is that the products $\mathbf{1 8}$ were formed by concerted $(3+2)$ cycloaddition reactions via a helical transition state as illustrated in structure 21. This is consistent with the retention of the relative

stereochemistry at the reaction sites for the cyclisation of 7a,c and \mathbf{e}. However it was unexpected that the cycloaddition should show this regioselectivity rather than that in structure $\mathbf{2 2}$. This was primarily because all previous examples of the cycloadditions of propargyl-allenyl $\dagger 1,3$-dipoles in systems such as 23 have reacted with the regioselectivity shown ${ }^{6}$ and also because, in intermolecular reactions of diazo-compounds, monosubstituted alkenes react with the opposite regioselectivity to that observed here for $\mathbf{7 b}$. In this work the only example to show some reaction via the expected regioselectivity was $7 \mathbf{e}$ which gave 20 as the major product (59%) together with 18e $\left(\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{CO}_{2} \mathrm{Me}\right)(28 \%)$. Compound 20 was identified primarily from the similarity of its NMR spectra to those of the corresponding nitrile ylide adduct. ${ }^{1}$ It would appear that the strong activating and regio-directing effect of the methoxycarbonyl group ${ }^{6}$ serves to selectively stabilise transition state 22.
Only three examples of analogues which lack the cyclopentenyl ring in the γ, δ position have been studied, $7 \mathbf{f}, \mathbf{g}$ and \mathbf{h}. The reactions of $7 \mathbf{f}, \mathbf{g}\left(\mathrm{R}^{4}=\mathrm{Ph}\right.$ and p-tolyl respectively) are shown in Scheme 5. They proved to be quite different from those discussed above in that the tosylhydrazone salts, when subjected to the same reaction conditions (stirring in DME at room temperature for 48 h), did not give cycloadducts analogous to $\mathbf{1 8}$ and 20 but gave only the diazo-compounds $7 \mathrm{f}, \mathrm{g}$ in virtually quantitative yield. On heating at $80^{\circ} \mathrm{C}$ in DME the diazo-compounds decomposed (Scheme 5) to give the cyclopropanaphthalenes $\mathbf{1 9 f}, \mathrm{g}$ as the major products (54 and 49%) and the pyrrolo[2,1-a]phthalazines $\mathbf{2 4 f}, \mathrm{g}$ (22 and 21%). The former are the expected carbene addition products but the reaction path to the pyrrolophthalazines $\mathbf{2 4 f}, \mathbf{g}$ is new. The reaction was carried out first with $7 \mathrm{f}\left(\mathrm{R}^{4}=\mathrm{Ph}\right)$ and the identity of the product as $\mathbf{2 4 f}\left(\mathrm{R}^{4}=\mathrm{Ph}\right)$ was confirmed by X-ray crystallography (Fig. 3). Having seen the unusual nature of the product, it seemed important for mechanistic reasons to be able to differentiate between the two phenyl groups in $\mathbf{2 4 f}$ so the reaction was repeated with $7 \mathrm{~g}\left(\mathrm{R}^{4}=p\right.$-tolyl) with the result shown. The most likely reaction mechanism involves a two-step process, firstly 1,1 -cycloaddition to give 26 as the primary product which subsequently rearranges as shown to give 24 . Analogous rearrangements of simpler vinylaziridines are well known ${ }^{7,8}$ but usually require more forcing conditions. That 26 should rearrange to give $\mathbf{2 4}$ rather than take the expected aza-Cope route to give $\mathbf{2 5}$ is probably because the latter is thermodynamically disfavoured by the presence of the low bond-energy azo-group. A 1,1-cycloaddition reaction leading directly from $\mathbf{7}$ to $\mathbf{2 6}$ is proposed here, rather than an indirect route analogous to $\mathbf{1 0} \rightarrow \mathbf{1 1} \rightarrow \mathbf{1 3}$, because of earlier work ${ }^{3}$ which

[^0]

Fig. 3 Crystal structure of compound $\mathbf{2 4 f}$.
showed that 1,7-electrocyclisation of diazo-compounds is strongly inhibited by cis substituents on the δ carbon atom which are larger than a hydrogen atom. This chemistry thus provides the first evidence for the occurrence of a 1,1 -cycloaddition reaction in systems of this type.

The analogue 7 h with a cyclohexene ring in the γ, δ position also showed a different pattern of reactivity to the analogues $7 \mathrm{a}-\mathrm{e}$ containing a cyclopentene ring. On reaction at room temperature, 7h gave a mixture of products which could not be separated, but whose NMR spectrum indicated the absence of a cycloadduct analogous to $\mathbf{1 8}$. Reaction at $80^{\circ} \mathrm{C}$ gave only the hydrocarbon product 19h (Scheme 6), in moderate yield (59\%).

Scheme 6
Comparing the results for the diazo-compounds 7a-e (Scheme 4), which cyclise rapidly at room temperature to give 18, with those for 7h (Scheme 6), which does not undergo a similar reaction, and 7f,g (Scheme 5), which are stable at room temperature, it is clear that the presence of the cyclopentene ring in $7 \mathbf{a}-\mathbf{e}$ serves in some way to expedite the cycloaddition reaction via the transition state $\mathbf{2 1}$. This effect is reminiscent of earlier observations when it was shown that the presence of a cyclopentene ring had a profound effect on 1,5-vs. 1,7-periselectivity in electrocyclisation reactions. ${ }^{9}$ The use of Dreiding models shows that, as noted in the earlier work, the presence of the cyclopentene ring has the effect of expanding the exocyclic bond angles at the γ and δ positions. On a simple model this brings the ε atom of the alkene in $\mathbf{2 1}$ closer to the terminal N of the diazo group and takes it further away from the C of the diazo group in 22. This probably provides the basis for rationalising the unique reactivity and regioselectivity observed in the reactions of $7 \mathbf{a}-\mathbf{e}$, but a detailed explanation is not possible without modelling calculations of the two transition states.

Experimental

All proton NMR spectra were run at 250 MHz and all carbon NMR spectra at 62.9 MHz using CDCl_{3} as solvent unless otherwise stated. Chemical shifts are recorded as δ values; J values are given in Hz . In the ${ }^{13} \mathrm{C}$ spectra carbon multiplicity was established by single frequency off-resonance decoupling or by DEPT. Mass spectra were obtained using electron ionisation at 70 eV unless otherwise stated. Preparative chromatography ${ }^{10}$
was carried out on silica gel by the flash column method (Merck Kieselgel 60, 230-400 mesh), the 'dry-column flash' method (15 $\mu \mathrm{m}$, Fluka Kieselgel G) or the 'medium pressure' (MPLC) technique using $100 \times 2.5 \mathrm{~cm}$ columns (Merck Kieselgel 60, $230-400$ mesh), and eluting solvents based on hexane admixed with ether or ethyl acetate. Ether refers to diethyl ether. 'Evaporation' of solvents indicates evaporation under reduced pressure using a rotary evaporator. All drying of solutions was done with anhydrous magnesium sulfate. Tetrahydrofuran (THF) was distilled from sodium and benzophenone as required. Ether was dried over sodium wire. 1,2-Dimethoxyethane (DME) was passed through a column of activated alumina and stored over molecular sieves $4 \AA$.

Preparation of the bromodienes 15a-h

(E) - and (Z)-3-Bromo-2-phenylbut-2-enal, ${ }^{4}$ 1-bromo-2-formylcyclopentene, ${ }^{4}$ 1-bromo-2-formylcyclohexene, ${ }^{4}$ (E, E)-4-bromo-1,3-diphenylpenta-1,3-diene ${ }^{4} \mathbf{1 5 f}$ and (E)-1-bromo-2-(2-phenylethenyl)cyclopentene ${ }^{4}$ 15a, 1-bromo-2-(2-phenylethenyl)cyclohexene 15 h as a mixture of (E) and (Z) isomers, ${ }^{4}$ methyl 3-(2-bromocyclopent-1-enyl)propenoate ${ }^{1} \mathbf{1 5}$ e were prepared by known routes.

1-Bromo-2-ethenylcyclopentene 15b. n-Butyllithium (16.5 $\mathrm{cm}^{3}, 2.6 \mathrm{M}$ in hexanes, 34.4 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of methyltriphenylphosphonium bromide $(12.31 \mathrm{~g}, 34.5 \mathrm{mmol})$ in ether $\left(100 \mathrm{~cm}^{3}\right)$. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then a solution of 1-bromo-2-formylcyclopentene ($6 \mathrm{~g}, 34.5 \mathrm{mmol}$) in ether ($10 \mathrm{~cm}^{3}$) was added. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, then 2 h at room temperature. Hydrolysis with ammonium chloride solution ($10 \% \mathrm{w} / \mathrm{v}$, $\left.150 \mathrm{~cm}^{3}\right)$ and an extractive work up with ether ($2 \times 150 \mathrm{~cm}^{3}$) gave, after evaporation of the solvent, a brown oil. Flash chromatography (silica, hexane 100%) gave 1-bromo-2-ethenylcyclopentene ($2.4 \mathrm{~g}, 41 \%$) as a colourless oil (Found: $(\mathrm{M}+1)^{+}$, 172.9950, 174.9941. $\mathrm{C}_{7} \mathrm{H}_{9}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{7} \mathrm{H}_{9}{ }^{81} \mathrm{Br}$ require $(\mathrm{M}+1)^{+}$, 172.9966, 174.9945); $\delta_{\mathrm{H}} 1.65-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23-2.29(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 11.0)$, 5.26 (d, $1 \mathrm{H}, \mathrm{CH}, J 17.5$), 6.88 (dd, $1 \mathrm{H}, \mathrm{CH}, J 17.5$ and 11.0); δ_{C} $21.9\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 114.7$ (olefinic $\left.\mathrm{CH}_{2}\right)$, 124.9, 132.1 (quaternary (quat.) olefinic), 136.9 (olefinic CH); m / z (FAB) $175\left({ }^{81} \mathrm{Br}(\mathrm{M}+1), 41 \%\right), 173\left({ }^{(79} \mathrm{Br}(\mathrm{M}+1), 41\right), 115$ (15), 95 (32), 81 (20), 79 (17), 55 (100).

1-Bromo-2-(prop-1-enyl)cyclopentene as a 2:1 mixture of (E) and (Z) isomers $15 \mathrm{c} . n$-Butyllithium $\left(16.82 \mathrm{~cm}^{3}, 2.05 \mathrm{M}\right.$ in hexanes, 34.48 mmol) was added dropwise to a suspension of ethyltriphenylphosphonium bromide ($12.80 \mathrm{~g}, 34.48 \mathrm{mmol}$) in ether $\left(100 \mathrm{~cm}^{3}\right)$. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then a solution of 1-bromo-2-formylcyclopentene $(6 \mathrm{~g}, 34.48$ $\mathrm{mmol})$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, then 4 h at room temperature. The usual work up gave a yellow oil. Flash chromatography (silica, hexane) gave a mixture of (E)- and (Z)-1-bromo-2-(prop-1-enyl)cyclopentene ($3.52 \mathrm{~g}, 55 \%$) which could not be separated (Found: M^{+}, 186.0041, 188.0021. $\mathrm{C}_{8} \mathrm{H}_{11}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{8} \mathrm{H}_{11}{ }^{81} \mathrm{Br}$ require M^{+}, 186.0044, 188.0024); $\delta_{\mathrm{H}} 1.75$ (br d, $3 \mathrm{H}, \mathrm{CH}_{3}, J 6.6$), 1.9-2.0 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.3-2.4 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.65-2.75 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $5.4-5.75\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right), 6.07\left[\mathrm{br} \mathrm{d}, 1^{\prime}-\mathrm{H}((Z)\right.$ isomer $), J$ 11.4], 6.29 [br d, 1'-H ((E) isomer), $J 15.8$] ($E: Z$ ratio 2:1); $\delta_{\mathrm{C}} 14.2,16.4$ $\left(\mathrm{CH}_{3}\right), 21.4,22.3\left(\mathrm{CH}_{2}\right), 33.5,36.4\left(\mathrm{CH}_{2}\right), 39.0,40.1\left(\mathrm{CH}_{2}\right)$, 124.4, 125.6 (olefinic CH), 136.5, 136.7, 136.3, 137.8 (quat. olefinic CH); $m / z(\mathrm{FAB}) 188\left({ }^{81} \mathrm{Br}(\mathrm{M}), 42 \%\right), 186\left({ }^{79} \mathrm{Br}(\mathrm{M}), 43\right)$, 145 (52), 115 (67), 81 (49), 79 (51), 55 (100), 41 (78).

1-Bromo-2-(2-methylprop-1-enyl)cyclopentene 15d. Potassium tert-butoxide ($3.86 \mathrm{~g}, 34.48 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of isopropyltriphenylphosphonium iodide ($14.9 \mathrm{~g}, 34.48 \mathrm{mmol}$) in dry THF (100
cm^{3}) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then a solution of 1-bromo-2-formylcyclopentene $(6 \mathrm{~g}, 34.48$ mmol) in THF was added and the mixture was stirred at room temperature for 4 h . The usual work up gave a brown oil. Flash chromatography (silica (Brockmann grade 3), hexane), gave 1-bromo-2-(2-methylprop-1-enyl)cyclopentene (4.1 $\mathrm{g}, 59 \%$) as a colourless oil (Found: M^{+}200.0210, 202.0179. $\mathrm{C}_{9} \mathrm{H}_{13}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{9} \mathrm{H}_{13}{ }^{81} \mathrm{Br}$ require M^{+}200.0201, 202.0181); $\delta_{\mathrm{H}} 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90-2.01(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.57-2.66 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $5.95(\mathrm{~s}, 1 \mathrm{H}$, olefinic CH$)$; $\delta_{\mathrm{C}} 19.7\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right)$, 120.1 (olefinic CH), 118.8, 136.7, 137.4 (quat. olefinic); m / z (FAB) $202\left({ }^{81} \mathrm{BrM}, 49 \%\right) 200\left({ }^{79} \mathrm{BrM}, 50\right), 146$ (76), 122 (54), 81 (87), 79 (94), 57 (100).
(E, E)-4-Bromo-1-(p-tolyl)-3-phenylpenta-1,3-diene $\quad 15 \mathrm{~g} . \quad n-$ Butyllithium ($8.37 \mathrm{~cm}^{3}$, 1.6 M in hexanes, 13.39 mmol) was added dropwise to a stirred suspension of 4-methylbenzyltriphenylphosphonium chloride ($5.39 \mathrm{~g}, 13.39 \mathrm{mmol}$) in ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then a solution of (Z)-3-bromo-2-phenylbut-2-enal ($3 \mathrm{~g}, 13.39$ $\mathrm{mmol})$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then 3 h at room temperature. The usual work up gave a brown oil. Flash chromatography (silica, hexane 100%) gave the product as a colourless oil which on distillation gave (E, E)-4-bromo-1-(p-tolyl)-3-phenylpenta-1,3-diene (2.49 g, 59%) as colourless crystals, $\mathrm{mp} 61-62^{\circ} \mathrm{C}$ (pentane) (Found: $(\mathrm{M}+1)^{+}, 312.0516,314.0486 . \mathrm{C}_{18} \mathrm{H}_{17}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{18} \mathrm{H}_{17}{ }^{81} \mathrm{Br}$ require $\left.(\mathrm{M}+1)^{+}, 312.0514,314.0493\right)$; $\delta_{\mathrm{H}} 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 16.0), 7.09-7.47(\mathrm{~m}, 9 \mathrm{H}$, aromatic CH$), 7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 16.0)$; $\delta_{\mathrm{C}} 21.1\left(\mathrm{CH}_{3}\right), 27.2$ $\left(\mathrm{CH}_{3}\right), 126.5,127.3,128.3,129.1,129.4,129.5,134.1$ (olefinic and aromatic CH), 122.6, 134.3, 137.5, 138.1, 138.9 (quat. olefinic and aromatic); m/z $314\left({ }^{81} \mathrm{Br}(\mathrm{M}), 58 \%\right), 312\left({ }^{79} \mathrm{Br}(\mathrm{M})\right.$, 58), 265 (59), 233 (100), 115 (30), 105 (28), 91 (90); $v_{\text {max }}(t h i n$ film) $/ \mathrm{cm}^{-1} 1600$ (diene).

Preparation of the 2-(1,3-dienyl)benzaldehydes 16a-f and their p-tosylhydrazones 17a-f

These compounds were prepared by the Suzuki coupling reactions of 2-formylphenylboronic acid with the appropriate bromodiene (Scheme 1). The p-tosylhydrazone derivatives were prepared, as in earlier work, ${ }^{3}$ by the admixture of warm $\left(40^{\circ} \mathrm{C}\right)$ ethanolic equimolar solutions of the aldehyde and toluene-psulfonylhydrazide. The reaction mixtures were kept at $40^{\circ} \mathrm{C}$ for 1 h then at room temperature overnight and then worked up. The methods are given in detail for the first example.
(E)-2-[2-(2-Phenylethenyl)cyclopentenyl]benzaldehyde 16a. A mixture of (E)-1-bromo-(2-phenylethenyl)cyclopentene 15a $(0.82 \mathrm{~g}, \quad 3.3 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) $(0.115 \mathrm{~g}, 0.099 \mathrm{mmol}, 3 \% \mathrm{~mol}$ catalyst) in DME $\left(20 \mathrm{~cm}^{3}\right.$) was stirred for 1 h at room temperature. Sodium carbonate ($0.36 \mathrm{~g}, 3.5 \mathrm{mmol}$) and 2-formylphenylboronic acid $(0.5 \mathrm{~g}, 3.3 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 1 h . The solvent was removed in vacuo and water $\left(30 \mathrm{~cm}^{3}\right)$ was added. This mixture was extracted with DCM $\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and the combined organic layers were dried and then passed through a pad of alumina. The solvent was removed in vacuo to give a yellow solid. Crystallisation gave (E)-2-[2-(2-phenylethenyl)cyclopentenyl]benzaldehyde $(0.89 \mathrm{~g}$, 91%), mp 102-103 ${ }^{\circ} \mathrm{C}$ from hexane (Found: C, 87.7 ; H, 6.6%. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ requires C, $\left.87.6 ; \mathrm{H}, 6.6 \%\right) ; \delta_{\mathrm{H}} 2.04-2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.81-2.99 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.54(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}, J 16), 6.64(\mathrm{~d}, 1 \mathrm{H}$, $=\mathrm{CH}, J 16), 7.11-8.02(\mathrm{~m}, 9 \mathrm{H}$, aromatic CH$), 10.02(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHO})$; $\delta_{\mathrm{C}} 22.4\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 122.7,126.3$, $127.4,127.5,127.6,128.4,129.7,131.4,133.7$ (olefinic and aromatic CH), 134.1, 137.2, 138.1, 140.8, 142.3 (quat. olefinic and aromatic), 192.1 (CHO); $v_{\max }$ (Nujol)/cm $\mathrm{cm}^{-1} 1690$ (CHO).
p-Tosylhydrazone 17a. A solution of p-tosylhydrazide (0.36 $\mathrm{g}, 1.93 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of the aldehyde $16 \mathrm{a}(0.5 \mathrm{~g}, 1.82 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$. The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 1 h then cooled to room temperature and stirred for 12 h . The solvent was removed in vacuo to give a yellow oil. MPLC (silica, hexane-ether, $60: 40$) gave the p-tosylhydrazone 17a as a colourless solid $(0.57 \mathrm{~g}$, 71%), mp 118-120 ${ }^{\circ} \mathrm{C}$ (hexane-ether) (Found: C, 73.3; H, 6.3; $\mathrm{N}, 6.2 \% ;(\mathrm{M}+1)^{+}, 443.1792 . \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}$, 5.9; $\mathrm{N}, 6.3 \%$; $(\mathrm{M}+1)^{+}, 443.1793$); $\delta_{\mathrm{H}} 2.04$ (quin., $2 \mathrm{H}, \mathrm{CH}_{2}$, $J 7.4), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67-2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.47(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}, J 16.0$), 6.55 (d, $1 \mathrm{H}, \mathrm{CH}, J 16.0$), $7.11-7.94(\mathrm{~m}, 13 \mathrm{H}$, aromatic CH$), 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}} 21.4\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{2}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 123.2,126.1,126.2,127.2,127.6,128.4$, 129.1, 129.5, 129.9, 130.6, 146.8 (olefinic and aromatic CH), $130.9,135.2,137.3,138.8,139.1,139.8,143.8$ (quat. olefinic and aromatic); m / z (FAB) 443 (M + 1, 40\%), 393 (43), 322 (35), 252 (74), 228 (49), 202 (69), 178 (58), 115 (100).

2-(2-Ethenylcyclopentenyl)benzaldehyde 16b. A mixture of 1-bromo-2-ethenylcyclopentene $\mathbf{1 5 b}(1.05 \mathrm{~g}, 6.1 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) $(0.211 \mathrm{~g}, 0.18 \mathrm{mmol}$, $3 \% \mathrm{~mol}$ catalyst) in DME ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 1 h . Sodium carbonate ($0.62 \mathrm{~g}, 6.1 \mathrm{mmol}$) and 2-formylphenylboronic acid ($0.92 \mathrm{~g}, 6.1 \mathrm{mmol}$) in water (20 cm^{3}) were added and the mixture was heated at reflux for 3 h . The usual work up gave a yellow oil which on distillation gave 2-(2-ethenylcyclopentenyl)benzaldehyde ($0.75 \mathrm{~g}, 62 \%$), bp $210^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: C, $84.5 ; \mathrm{H}, 7.2 \% ; \mathrm{M}^{+}$, 198.1054 . $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}$ requires C, 84.8; H, 7.1\%; M ${ }^{+}$, 198.1045); $\delta_{\mathrm{H}} 2.05$ (quin., $2 \mathrm{H}, \mathrm{CH}_{2}, J 6.5$), $2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J 6.5\right), 2.82(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2}, J 6.5$), 5.1 (d, $1 \mathrm{H}, \mathrm{CH}_{2}, J 10.3$), 5.2 (d, $1 \mathrm{H}, \mathrm{CH}_{2}, J 17.4$), $6.13(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}, J 17.4$ and 10.3$), 7.23-7.96(\mathrm{~m}, 4 \mathrm{H}$, aromatic $\mathrm{CH}), 9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ; \delta_{\mathrm{C}} 22.1\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right)$, $116.4\left(\mathrm{CH}_{2}\right), 127.3,127.4,129.5,130.8,133.6$ (olefinic and aromatic CH), 133.9, 137.4, 141.1, 142.2 (quat. olefinic and aromatic), 192.1 (CHO); $m / z 198\left(\mathrm{M}^{+}, 6 \%\right), 167$ (18), 115 (24), 95 (77), 69 (70), 55 (100); $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 1690$ (CHO).
\boldsymbol{p}-Tosylhydrazone 17b. Yield $67 \%, \mathrm{mp} 83-84^{\circ} \mathrm{C}$ (hexane) (Found: C, 69.2; H, 6.1; N, 7.5\%; (M+1) ${ }^{+}$, 367.1487. $\mathrm{C}_{21} \mathrm{H}_{22^{-}}$ $\mathrm{N}_{2} \mathrm{SO}_{2}$ requires C, 68.8; H, 6.05; N, 7.6\%; (M+1) ${ }^{+}$, 367.1480); $\delta_{\mathrm{H}} 1.8-2.0\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.5-2.7(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), 4.8 (d, $1 \mathrm{H}, \mathrm{CH}, J 10.7$), $5.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 17.4), 5.97$ (dd, $1 \mathrm{H}, \mathrm{CH}, J 17.4$ and 10.7), 6.60-7.49 (m, 8 H , aromatic CH), 7.79 (br s, $1 \mathrm{H}, \mathrm{NH}$); $\delta_{\mathrm{C}} 21.4\left(\mathrm{CH}_{3}\right)$, $21.9\left(\mathrm{CH}_{2}\right), 32.4$ $\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 115.5\left(\mathrm{CH}_{2}\right), 125.9,127.2,127.7,128.7$, $129.5,129.8,131.3,146.8$ (olefinic and aromatic CH), 130.9, 135.3, 138.5, 138.8, 139.4, 143.9 (quat. olefinic and aromatic); m / z (FAB) 367 (M + 1, 99\%), 269 (68), 251 (100), 197 (68), 178 (53), 152 (99), 91 (28).

2-[2-(Prop-1-enyl)cyclopentenyl]benzaldehyde 16c as a 2:1 mixture of (E) and (\boldsymbol{Z}) isomers. A mixture of 1-bromo-2-(prop1 -enyl)cyclopentene as a mixture of (Z) - and (E) isomers $\mathbf{1 5 c}(1.23 \mathrm{~g}, 6.62 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) $(0.229 \mathrm{~g}, 0.198 \mathrm{mmol}, 3 \% \mathrm{~mol}$ catalyst) in DME $\left(20 \mathrm{~cm}^{3}\right.$) was stirred for 1 h at room temperature. Sodium carbonate ($0.70 \mathrm{~g}, 7 \mathrm{mmol}$) and 2-formylphenylboronic acid $(1 \mathrm{~g}, 6.62 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 4 h . The usual work up gave the product as a yellow oil. Distillation gave a mixture of the (Z) and (E) isomers of 2-[2-(prop-1-enyl)cyclopentenyl]benzaldehyde which proved impossible to separate ($0.85 \mathrm{~g}, 63 \%$), bp $160^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: $(\mathrm{M}+1)^{+}$, 213.1065. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ requires $(\mathrm{M}+1)^{+}$, 213.1279); δ_{H} (${ }^{*}$ Indicates the major isomer) $1.66^{*}\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J 5.2$), 1.73 (d, $3 \mathrm{H}, \mathrm{CH}_{3}, J 7.4$), $1.97-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68-$ $2.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.63-5.77\left[\mathrm{~m}, 2^{\prime} \mathrm{H}\right.$ and $1^{\prime} \mathrm{H}((Z)$ isomer $\left.)\right]$, 5.86 [d, $1^{\prime} \mathrm{H}((E)$ isomer), CH, J 15.5], 7.23-7.97 (m, 4 H, aromatic CH), $9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.95^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ; \delta_{\mathrm{C}} 14.8$
$\left(\mathrm{CH}_{3}\right), 18.3^{*}\left(\mathrm{CH}_{3}\right), 22.2^{*}\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 33.4^{*}\left(\mathrm{CH}_{2}\right), 36.8$ $\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 40.4^{*}\left(\mathrm{CH}_{2}\right), 124.0,125.5,127.1,127.2$, 128.9, 129.3, 129.5, 133.6 (olefinic and aromatic CH), 133.8, 140.6, 140.7, 142.8, 142.9 (quat. olefinic and aromatic), 192.2 (CHO), 192.3* (CHO); m / z (FAB) 213 (M + 1, 15\%), 147 (29), 91 (20), 69 (91), 55 (100), 41 (87); $v_{\max }\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 1690$ (CHO).
\boldsymbol{p}-Tosylhydrazone 17c ((\boldsymbol{E}) isomer). Yield 69%, as colourless crystals, mp 138-139 ${ }^{\circ} \mathrm{C}$ (ethanol) (Found: C, 69.2; H, 6.4; N, 7.4%; $(\mathrm{M}+1)^{+}, 381.1648 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires $\mathrm{C}, 69.45$; $\left.\mathrm{H}, 6.4 ; \mathrm{N}, 7.4 \% ;(\mathrm{M}+1)^{+}, 381.1637\right)$; $\delta_{\mathrm{H}} 1.57$ (br d, $3 \mathrm{H}, \mathrm{CH}_{3}$, $J 6.6$), 1.95 (quin., $2 \mathrm{H}, \mathrm{CH}_{2}, J 7.5$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.55-$ $2.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.56-5.67$ (dq, $1 \mathrm{H}, \mathrm{CH}, J 16.6$ and 6.6), 5.73 (d, $1 \mathrm{H}, \mathrm{CH}, J 16.6$), $7.06-7.36(\mathrm{~m}, 5 \mathrm{H}$, aromatic CH), 7.68 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.82-7.92 (m, 3 H , aromatic CH); $\delta_{\mathrm{C}} 18.2$ $\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 125.8$, $125.9,127.0,127.8,128.2,128.9,129.5,129.9,147.0$ (olefinic and aromatic CH), 130.8, 135.4, 139.1, 139.2, 144.0 (quat. aromatic and olefinic); m / z (FAB) 381 (M + 1, 100\%), 380 (30), 279 (24), 225 (55), 195 (93), 167 (61), 115 (21).

2-[2-(2-Methylprop-1-enyl)cyclopentenyl]benzaldehyde 16d. A mixture of 1-bromo-2-(2-methylprop-1-enyl)cyclopent-1-ene 15d ($1.32 \mathrm{~g}, 6.62 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) $(0.229 \mathrm{~g}, 0.198 \mathrm{mmol}, 3 \% \mathrm{~mol}$ catalyst) in DME $\left(20 \mathrm{~cm}^{3}\right.$) was stirred for 1 h at room temperature. Sodium carbonate ($0.7 \mathrm{~g}, 6.62 \mathrm{mmol}$) and 2-formylphenylboronic acid $(1 \mathrm{~g}, 6.62 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 6 h . The usual work up gave an oil which on distillation gave 2-[2-(2-methylprop-1-enyl)cyclopentenyl]benzaldehyde as a yellow oil ($0.96 \mathrm{~g}, 64 \%$), bp $230^{\circ} \mathrm{C} /$ 0.05 mmHg (Found: C, 85.3; H, 8.0\%; $\mathrm{M}^{+}, 226.1355 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ requires C, $\left.84.9 ; \mathrm{H}, 8.0 \% ; \mathrm{M}^{+}, 226.1358\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.74-2.87 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 7.23-7.93(\mathrm{~m}, 4$ H , aromatic CH), $9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$; $\delta_{\mathrm{C}} 19.7\left(\mathrm{CH}_{3}\right), 23.3$ $\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 37.0\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 119.9$ (olefinic CH), 126.9, 127.0, 129.2, 133.5 (aromatic CH), 126.8, 133.7, 134.9, 136.3, 141.1 (quat. olefinic and aromatic), 192.3 (CHO); m / z 226 (M, 100\%), 225 (40), 209 (71), 167 (75), 115 (26), 59 (25); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 1700(\mathrm{CHO})$.
p-Tosylhydrazone 17d. Yield 55%, mp $113-115{ }^{\circ} \mathrm{C}$ (hexaneether) (Found: $(\mathrm{M}+1)^{+}$, 395.1779. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires $(\mathrm{M}+1)^{+}$, 395.1793); $\delta_{\mathrm{H}} 1.68\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$), 2.17-2.30 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.14-3.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$), 5.11 (br $\left.\mathrm{s}, 1^{\prime} \mathrm{H}\right), 7.25-7.86(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$) ; \delta_{\mathrm{C}} 25.0\left(\mathrm{CH}_{2}\right), 27.1$ $\left(2 \times \mathrm{CH}_{3}\right), 30.6\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{3}\right), 77.7$ (quat. olefinic carbon), 114.7 (quat. olefinic carbon), 124.0, 124.1, 124.9, 125.6, 128.2 (aromatic CH), 129.5, 132.4, 139.5, 140.1, 141.1 (quat. olefinic and aromatic); m / z (FAB) 395 ($\mathrm{M}+1$, 66%), 237 (92), 209 (100), 165 (98), 141 (58), 115 (32), 77 (45), 43 (41).
(E)-2-[2-(2-Methoxycarbonylethenyl)cyclopentenyl]benz-
aldehyde 16e. A mixture of (E)-1-bromo-2-(2-methoxycarbonylethenyl)cyclopentene $\mathbf{1 5 e}(0.76 \mathrm{~g}, 3.3 \mathrm{mmol})$ and tetrakis(triphenylphospine)palladium(0) $(0.115 \mathrm{~g}, 0.099 \mathrm{mmol}$, 3% mol catalyst) in DME ($20 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature. Sodium carbonate $(0.34 \mathrm{~g}, 3.3 \mathrm{mmol})$ and 2 formylphenylboronic acid ($0.5 \mathrm{~g}, 3.3 \mathrm{mmol}$) in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 12 h . The usual work up gave a yellow solid which was crystallised to give (E)-2-[2-(2-methoxycarbonylethenyl)cyclopentenyl]benzaldehyde ($0.47 \mathrm{~g}, 56 \%$), mp $131-132{ }^{\circ} \mathrm{C}$ (hexane-ethanol) (Found: $(\mathrm{M}+1)^{+}$, 257.1170. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\left.(\mathrm{M}+1)^{+}, 257.1178\right)$; $\delta_{\mathrm{H}} 2.05$ (quin., $2 \mathrm{H}, \mathrm{CH}_{2}, J 7.2$), $2.67\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J 7.2\right.$), 2.79 (t, $2 \mathrm{H}, \mathrm{CH}_{2}, J 7.2$), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, $J 15.8$), 7.01 (d, $1 \mathrm{H}, \mathrm{CH}, J 15.8$), $7.06-7.96(\mathrm{~m}, 4 \mathrm{H}$, aromatic
$\mathrm{CH}), 9.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ; \delta_{\mathrm{C}} 22.2\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right)$, $51.4\left(\mathrm{OCH}_{3}\right), 119.8,137.9$ (olefinic CH), 128.1, 128.6, 129.6, 133.8 (aromatic CH), 134.7, 137.9, 140.5, 147.6 (quat. olefinic and aromatic), 167.3 ($\mathrm{C}=\mathrm{O}$, ester), 191.2 (CHO); $m / z(\mathrm{FAB})$ 257 (M + 1, 22.5\%), 225 (49), 147 (44), 73 (100), 43 (63); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 1730$ (C=O, ester), 1690 (CHO).
p-Tosylhydrazone 17e. Yield 77%, mp 153- $154{ }^{\circ} \mathrm{C}$ (ethanol) (Found: C, 64.7; H, 5.8; N, 6.7\%; (M+1) ${ }^{+}$, 425.1541. $\mathrm{C}_{23} \mathrm{H}_{24}{ }^{-}$ $\mathrm{N}_{2} \mathrm{SO}_{4}$ requires C, $\left.65.1 ; \mathrm{H}, 5.7 ; \mathrm{N}, 6.6 \% ;(\mathrm{M}+1)^{+}, 425.1535\right)$; $\delta_{\mathrm{H}} 1.91-2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.68(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 15.7), 6.98-$ $7.18(\mathrm{~m}, 10 \mathrm{H}$, olefinic and aromatic CH), 8.78 (br s, $1 \mathrm{H}, \mathrm{NH})$; $\delta_{\mathrm{C}} 21.4\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{OCH}_{3}\right)$, 118.9 , 126.5, 127.6, 127.8, 129.0, 129.4, 129.8, 138.6, 145.9 (olefinic and aromatic CH), 131.0, 135.3, 137.1, 137.6, 143.8, 149.5 (quat. olefinic and aromatic), 167.5 ($\mathrm{C}=\mathrm{O}$, ester); m / z (FAB) 425 (M + 1, 19\%), 393 (28), 339 (51), 279 (100), 227 (30), 179 (48), 167 (53), 115 (38); $v_{\text {max }}$ (Nujol)/cm $\mathrm{cm}^{-1} 1730$ (C=O).
(E, E)-2-(1-Methyl-2,4-diphenylbuta-1,3-dienyl)benzaldehyde
16f. A mixture of (E, E)-4-bromo-1,3-diphenylpenta-1,3-diene $\mathbf{1 5 f}(0.5 \mathrm{~g}, 3.3 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) $(0.229 \mathrm{~g}, 0.194 \mathrm{mmol}, 3 \%$ mol catalyst) in DME $\left(20 \mathrm{~cm}^{3}\right.$) was stirred for 1 h at room temperature. Sodium carbonate ($0.38 \mathrm{~g}, 3.3 \mathrm{mmol}$) and 2-formylphenylboronic acid $(0.5 \mathrm{~g}, 3.3 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 3 h . The usual work up gave a yellow oil which solidified on standing. Crystallisation gave (E, E)-2-(1-methyl-2,4-diphenylbuta-1,3-dienyl)benzaldehyde (0.89 g , 82%), mp $61-62^{\circ} \mathrm{C}$ (hexane) (Found: C, 88.3; H, $6.1 \% ; \mathrm{M}^{+}$, 324.1523. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}$ requires C, 88.85; H, $6.2 \% ; \mathrm{M}^{+}, 324.1514$); $\delta_{\mathrm{H}} 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 15.9), 6.60(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}, J 15.9), 6.99-8.05(\mathrm{~m}, 14 \mathrm{H}$, aromatic CH$), 10.24(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHO}) ; \delta_{\mathrm{C}} 24.1\left(\mathrm{CH}_{3}\right), 126.0,126.8,127.0,127.4,127.6,128.0$, 128.1, 128.3, 129.4, 129.6, 132.0, 133.9 (olefinic and aromatic CH), 133.4, 133.5, 136.9, 138.6, 140.1, 146.8 (quat. olefinic and aromatic), 191.5 (CHO); $m / z 324$ (M, 47\%), 229 (29), 202 (71), 178 (41), 115 (100), 102 (26); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1690$ (CHO).
p-Tosylhydrazone 17f. Yield 78%, mp $134-136^{\circ} \mathrm{C}$ (hexaneether) (Found: C, 75.3; H, 6.0; N, 5.6\%; M ${ }^{+}$, 492.1870. $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires C, $75.6 ; \mathrm{H}, 5.7 ; \mathrm{N}, 5.7 \% ; \mathrm{M}^{+}, 492.1871$); $\delta_{\mathrm{H}} 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, $J 16.0), 6.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 16.0), 6.97-8.00(\mathrm{~m}, 14 \mathrm{H}$, aromatic $\mathrm{CH}), 8.26$ (br s, $1 \mathrm{H}, \mathrm{NH}$); $\delta_{\mathrm{C}} 21.4\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 126.0$, 126.3, 126.9, 127.1, 127.3, 127.7, 128.3, 128.4, 128.8, 129.2, 129.6, 129.7, 130.4, 131.7, 146.5 (olefinic and aromatic CH), $130.6,135.2,137.3,138.9,139.5,143.4,144.0$ (quat. olefinic and aromatic); m / z (FAB) 492 (M, 1\%), 455 (31), 345 (94), 269 (70), 257 (76), 178 (44), 167 (67), 115 (100).

($\boldsymbol{E}, \boldsymbol{E}$)-2-[1-Methyl-2-phenyl-4-(\boldsymbol{p}-tolyl)buta-1,3-dienyl]benz-

aldehyde 16 g . A mixture of (E, E)-4-bromo-3-phenyl-1-(p -tolyl)penta-1,3-diene $\mathbf{1 5 g}(2.06 \mathrm{~g}, 6.62 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) ($0.229 \mathrm{~g}, 0.198 \mathrm{mmol}, 3 \%$ mol catalyst) in DME ($20 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature. Sodium carbonate ($0.70 \mathrm{~g}, 7 \mathrm{mmol}$) and 2-formylphenylboronic acid ($1 \mathrm{~g}, 6.62 \mathrm{mmol}$) in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux for 3 h . The usual work up gave a viscous yellow oil which on distillation gave (E, E)-2-[1-methyl-2-phenyl-4-(p-tolyl)buta-1,3-dienyl]benzaldehyde $(1.81 \mathrm{~g}, 81 \%)$, bp $245^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: $\mathrm{M}^{+}, 338.1669$. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{M}^{+}, 338.1671$); $\delta_{\mathrm{H}} 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 15.8), 6.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 15.8)$, $6.87-8.07(\mathrm{~m}, 13 \mathrm{H}$, aromatic CH$), 10.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ; \delta_{\mathrm{C}} 21.0$ $\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 126.1,127.0,127.5,127.6,127.8,128.3$, 129.0, 129.6, 129.9, 132.2, 134.4 (olefinic and aromatic CH), 133.1, 133.6, 134.4, 137.1, 139.0, 140.4, 147.2 (quat. olefinic and aromatic), 191.8 (CHO); m / z (FAB) 338 (M, 28\%), 279 (23),

205 (39), 121 (56), 105 (100), 91 (47); $v_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 1690$ (CHO).
p-Tosylhydrazone $\mathbf{1 7 g}$. Yield 92%, mp $140-141^{\circ} \mathrm{C}$ (hexaneether) (Found: $(\mathrm{M}+1)^{+}$, 507.2124. $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 507.2106\right) ; \delta_{\mathrm{H}} 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.27 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $5.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 15.9), 6.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, J 15.9), 6.92-8.07 (m, 17 H , aromatic CH); δ_{C} 125.9, 126.1, 126.8, 127.1, 127.5, 128.0, 128.2, 128.9, 129.1, 129.4, 129.6, 131.5, 146.5 (olefinic and aromatic CH), 130.2, 130.6, 134.5, 135.1, 136.8, 138.9, 139.5, 143.5, 143.8 (olefinic and aromatic $\mathrm{CH}) ; m / z(\mathrm{APCI} \mathrm{CV}=35) 507.2(\mathrm{M}+1,85 \%)$.

2-[2-(2-Phenylethenyl)cyclohexenyl]benzaldehyde 16h as a 1.7:1 mixture of (E) and (Z) isomers. A mixture of 1-bromo-2-(2-phenylethenyl)cyclohexene $\mathbf{1 5 h}$, as a mixture of the (E) and (Z) isomers ($1.73 \mathrm{~g}, 6.62 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($0.229 \mathrm{~g}, 0.194 \mathrm{mmol}, 3 \%$ mol catalyst) in DME ($20 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature. Sodium carbonate ($0.74 \mathrm{~g}, 7 \mathrm{mmol}$) and 2-formylphenylboronic acid $(1 \mathrm{~g}, 6.62 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was heated at reflux overnight. The usual work up gave a yellow oil which on distillation gave 2-[2-(2-phenylethenyl)cyclohexenyl]benzaldehyde as an inseparable mixture of the (E) and (Z) isomers $\left(1.31 \mathrm{~g}, 69 \%\right.$), bp $240^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: M^{+}, 288.1513. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}$ requires M^{+}, 288.1514); $\delta_{\mathrm{H}} 1.70-1.90(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16-2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 4$ olefinic protons $5.81(\mathrm{~d}$, J 12.2), 6.15 (d, J 12.2), 6.49 (d, J 16.2), 6.58 (d, J 16.2); 6.98$8.03(\mathrm{~m}, 9 \mathrm{H}$, aromatic CH$), 2 \times \mathrm{CHO} 10.02(\mathrm{~s}), 10.04(\mathrm{~s}) ;$ $\delta_{\mathrm{C}} 22.5,22.6,22.7,25.1,28.6,31.4,33.5,34.7\left(\mathrm{CH}_{2}\right), 126.2$, $126.8,127.0,127.1,127.3,127.8,128.3,128.4,129.2,129.7$, 129.9, 130.6, 133.9, 134.8 (olefinic and aromatic CH), 133.1, 133.6, 137.4, 137.8, 147.4, 147.8 (quat. olefinic and aromatic), 192.1, 192.2 (CHO); m / z (FAB) 288 (M, 28\%), 271 (35), 197 (45), 105 (35), 91 (100); $v_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 1690$ (CHO).
p-Tosylhydrazone 17 h as a mixture of (E) and (Z) isomers. Yield 59%, mp 117-119 ${ }^{\circ} \mathrm{C}$ (hexane-ether) (Found: $(\mathrm{M}+1)^{+}$, 457.1938. $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{SO}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 457.1950\right)$; δ_{H} (* Indicates the major isomer) $1.68-1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16$ and 2.29* (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.33-2.42 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 6.43 (d, $1 \mathrm{H}, \mathrm{CH}$, J 16.3), 6.45 (d, $1 \mathrm{H}, \mathrm{CH}, J 16.3$), $7.06-7.91$ (m, 14 H , olefinic and aromatic CH$) ; \delta_{\mathrm{C}} 21.4\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 125.9,126.2,126.5,127.0,127.7,128.2$, 128.3, 128.9, 129.3, 129.5, 130.2, 146.6 (olefinic and aromatic CH), 130.5, 132.3, 135.2, 137.1, 137.5, 143.6, 143.9 (quat. olefinic and aromatic); m / z (APCI CV $=35$) $457.3(\mathrm{M}+1$, 100%); m / z (FAB) 456 (M, 8\%), 301 (28), 272 (30), 220 (38), 165 (73), 115 (57), 91 (100).

Generation and reactions of the 2-(1,3-dienyl)phenyldiazomethanes 7a-h

These intermediates were generated, as in earlier work, ${ }^{3}$ by the thermal decomposition of the sodium salts of the corresponding p-tosylhydrazones $\mathbf{1 7 a} \mathbf{- h}$ under aprotic conditions in DME as solvent. All reactions were carried out under nitrogen and in the dark. The method is given in detail for the first example.
(E)-2-[2-(2-Phenylethenyl)cyclopentenyl]phenyldiazomethane
7a. (i) At $80^{\circ} \mathrm{C}$. An ethanolic solution of sodium ethoxide (25 $\mathrm{cm}^{3}, 0.435 \mathrm{M}, 1.09 \mathrm{mmol}$) was added to a solution of the p-tosylhydrazone $17 \mathrm{a}(0.5 \mathrm{~g}, 1.15 \mathrm{mmol})$ in dry ethanol (10 cm^{3}). The reaction mixture was stirred for 1 h then the solvent was removed on a rotary evaporator at room temperature to leave the sodium salt. The latter was dried in the evaporation flask at room temperature under high vacuum over phosphorus pentaoxide in a desiccator for 12 h . Dry DME ($50 \mathrm{~cm}^{3}$) was added to the flask and the mixture was heated under reflux for 3 h . After cooling to room temperature the reaction mixture
was filtered through a pad of Celite and the solvent was removed in vacuo to give an orange oil which was shown by TLC (silica, hexane-ether, $80: 20$) to contain two components. Dry-column flash chromatography (silica, hexane-ether, $80: 20$ to $0: 100$) gave (a) 1,1a,2,3,4,8b-hexahydro-1-phenylcyclopenta[a]cyclopropa $[c]$ naphthalene $19 \mathrm{a}(0.142 \mathrm{~g}, 46 \%)$, mp 106$107^{\circ} \mathrm{C}$ (hexane) (Found: C, 92.6; H, 7.11\%; M ${ }^{+}$, 258.1406. $\mathrm{C}_{20} \mathrm{H}_{18}$ requires C, 93.0; H, 7.0\%; M ${ }^{+}$, 258.1408); $\delta_{\mathrm{H}} 1.13(\mathrm{t}, 1 \mathrm{H}$, CH, J4.2), 1.98-2.18 (m, 2 H, CH $)$, 2.41 (dd, 1 H, CH, J 3.9 and 8.0), 2.64-2.75 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}, J 4.2$ and 8.0), 6.99-7.46 (m, 9 H , aromatic CH$) ; \delta_{\mathrm{C}} 22.5\left(\mathrm{CH}_{2}\right), 26.2$ $(\mathrm{CH}), 28.6(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right), 33.3(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 123.8$, 125.1, 125.3, 126.0, 128.1 (aromatic CH), 128.3 ($2 \times$ aromatic CH), 130.1, 130.6, 134.7, 139.8, 143.1 (quat. aromatic and olefinic CH); and (b) 2,3,4,7-tetrahydro-4,7-methano-12-phenyl-1 H -cyclopenta $[e][2,3]$ benzodiazocine 18a (0.069 g , 27%), mp $121-123^{\circ} \mathrm{C}$ (hexane-ethanol) (Found: $(\mathrm{M}+1)^{+}$, 287.1542. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires $(\mathrm{M}+1)^{+}$, 287.1548); $\delta_{\mathrm{H}}(360$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.49-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28-2.56(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.79-2.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-12), 5.26(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.80-7.27(\mathrm{~m}, 9 \mathrm{H}$, aromatic CH$)$; $\delta_{\mathrm{C}} 21.0,36.3,39.6\left(3 \times \mathrm{CH}_{2}\right), 42.5$ (benzylic CH), $90.6,98.4$ $(2 \times \mathrm{CH}), 126.2,126.9,128.0,128.4,128.7,129.7,131.3$ (aromatic CH), 132.8, 135.3, 135.8, 140.1, 141.9 (quat. olefinic and aromatic); m / z (FAB) 287 (M + 1, 87\%), 286 (14), 258 (100), 228 (37), 189 (50), 178 (49), 167 (55), 115 (46). The structures of both products were confirmed by X-ray crystallography (Figs. 1 and 2).
(ii) At room temperature. The sodium salt from the p-tosylhydrazone 17a ($0.5 \mathrm{~g}, 1.15 \mathrm{mmol}$) was prepared and dried as above. Its solution in dry DME ($50 \mathrm{~cm}^{3}$) was stirred under nitrogen at room temperature and in the dark. Monitoring by TLC showed that reaction was complete after 48 h . A similar work up and chromatography gave $1,1 \mathrm{a}, 2,3,4,8 \mathrm{~b}-$ hexahydro-1-phenylcyclopenta[a]cyclopropa[c]naphthalene 19a ($0.049 \mathrm{~g}, 19 \%$) and 2,3,4,7-tetrahydro-4,7-methano-12-phenyl1 H -cyclopenta[e][2,3]benzodiazocine 18a ($0.175 \mathrm{~g}, 67 \%$) both identical in all respects to the products obtained in the experiment above.

Thermal decomposition of 2,3,4,7-tetrahydro-4,7-methano-12-phenyl-1 H -cyclopenta $[e][2,3]$ benzodiazocine $\mathbf{1 8 a}$. The reactant $\mathbf{1 8 a}(15 \mathrm{mg}, 0.052 \mathrm{mmol})$ in perdeuteriotoluene $\left(0.5 \mathrm{~cm}^{3}\right)$ in an NMR tube was heated at $78^{\circ} \mathrm{C}$. Monitoring by NMR showed that 1a, 2,3,4,8b-pentahydro-1-phenylcyclopenta[a]cyclopropa[c]naphthalene 19a was the only product.

2-(2-Ethenylcyclopentenyl)phenyldiazomethane 7b. The sodium salt from the p-tosylhydrazone $\mathbf{1 7 b}(0.40 \mathrm{~g}, 1.09 \mathrm{mmol})$ was prepared and dried as above. Its solution in dry DME (50 cm^{3}) was stirred under nitrogen at room temperature for 48 h . The usual work up gave an orange oil. Dry-column flash chromatography (silica, hexane-ether 70:30) gave 2,3,4,7-tetra-hydro-4,7-methano- $1 H$-cyclopenta $[e][2,3]$ benzodiazocine $\mathbf{1 8 b}$ as an orange solid $(0.19 \mathrm{~g}, 86 \%)$, which could not be crystallised, mp 94-96 ${ }^{\circ} \mathrm{C}$ (Found: $(\mathrm{M}+1)^{+}$211.1244. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 211.1235\right) ; \delta_{\mathrm{H}} 1.75-2.01(\mathrm{~m}, 4 \mathrm{H}$, cyclopentyl CH_{2} and $\left.12-\mathrm{CH}_{2}\right), 2.68-2.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02-3.14(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 5.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 7.3), 5.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 7.9), 7.05-$ $7.56(\mathrm{~m}, 4 \mathrm{H}$, aromatic CH$)$; $\delta_{\mathrm{C}} 21.0\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 82.7(\mathrm{CH}), 89.9(\mathrm{CH}), 127.8,128.3,129.5$, 131.3 (aromatic CH), 133.2, 135.5, 136.2, 140.4 (quat. olefinic and aromatic); m / z (FAB) $211(\mathrm{M}+1,62), 183$ (22), 182 (100), 181 (57), 167 (29), 152 (17), 115 (8).

2-[2-(Prop-1-enyl)cyclopentenyl]phenyldiazomethane 7c. The sodium salt of the p-tosylhydrazone $17 \mathrm{c}(0.40 \mathrm{~g}, 1.05$ mmol) was prepared and dried as above. Its solution in dry DME ($50 \mathrm{~cm}^{3}$) was stirred under nitrogen at room temperature for 48 h . The usual work up gave an orange oil. Dry-column
flash chromatography (silica, hexane-ether, 70:30) gave 2,3,4,7-tetrahydro-4,7-methano-12-methyl-1 H -cyclopenta $[e][2,3]$ benzodiazocine 18c as a viscous yellow oil ($0.16 \mathrm{~g}, 75 \%$) (Found: $(\mathrm{M}+1)^{+}$, 225.1380. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires $(\mathrm{M}+1)^{+}$, 225.1392); $\delta_{\mathrm{H}} 0.91\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J 7.2\right), 1.84-2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32(\mathrm{q}$, $1 \mathrm{H}, \mathrm{CH}, J 7.2), 2.69-2.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02-3.09(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $4.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.21-7.49(\mathrm{~m}$, 4 H , aromatic CH$)$; $\delta_{\mathrm{C}} 18.0\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right), 30.5(\mathrm{CH})$, $36.2\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 90.1(\mathrm{CH}), 97.6(\mathrm{CH}), 127.7,128.1$, 129.3, 131.2 (aromatic CH), 132.9, 135.0, 135.7, 139.8 (quat. olefinic and aromatic); m / z (FAB) $225(\mathrm{M}+1,35 \%)$, 197 (25), 196 (31), 195 (68), 181 (74), 179 (74), 167 (100), 115 (49), 91 (33).

2-[2-(2-Methylprop-1-enyl)]phenyldiazomethane 7d. The sodium salt of the p-tosylhydrazone $\mathbf{1 7 d}(0.3 \mathrm{~g}, 0.76 \mathrm{mmol})$ was prepared and dried as above. Its solution in dry DME $\left(50 \mathrm{~cm}^{3}\right)$ was stirred under nitrogen at room temperature for 48 h . The usual work up gave an orange oil. Dry-column flash chromatography (silica, hexane-ether, 70:30) gave 2,3,4,7-tetrahydro-4,7-methano-12,12-dimethyl-1 H -cyclopenta $[e][2,3]$ benzodiazocine $18 d(0.16 \mathrm{~g}, 88 \%), \mathrm{mp} 87-89^{\circ} \mathrm{C}$ as a pale yellow solid which could not be crystallised (Found: $(\mathrm{M}+1)^{+}, 239.1550 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 239.1548\right) ; \delta_{\mathrm{H}} 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.87-2.07 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72-2.97\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-$ $3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.16-$ $7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic CH); $m / z(\mathrm{FAB}) 239(\mathrm{M}+1,100 \%), 236$ (30), 211 (13), 210 (92), 195 (35), 169 (44), 165 (43), 43 (70).
(E)-2-[2-(2-Methoxycarbonylethenyl)cyclopentenyl]phenyl-
diazomethane 7e. The sodium salt of the p-tosylhydrazone 17 e $(0.4 \mathrm{~g}, 0.94 \mathrm{mmol})$ was prepared and dried as above. Its solution in dry DME ($50 \mathrm{~cm}^{3}$) was stirred under nitrogen at room temperature for 48 h . The usual work up gave a yellow solid shown by TLC to contain two components. Dry-column flash chromatography (silica, hexane-ether, $70: 30$ to $0: 100$) gave (a) 2,3,4,7-tetrahydro-4,7-methano-12-methoxycarbonyl$1 H$-cyclopenta $[e][2,3]$ benzodiazocine 18e $(0.07 \mathrm{~g}, 28 \%)$, mp $135-137^{\circ} \mathrm{C}$ (hexane-ethanol) (Found: $(\mathrm{M}+1)^{+}, 269.1290$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 269.1290\right)$; $\delta_{\mathrm{H}} 1.91-1.98(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78-2.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05-3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.25-$ $7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic CH$) ; \delta_{\mathrm{C}} 21.0\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 39.5$ $\left(\mathrm{CH}_{2}\right), 41.5(\mathrm{CH}), 52.4\left(\mathrm{OCH}_{3}\right), 85.6(\mathrm{CH}), 92.7(\mathrm{CH}), 128.3$, 128.8, 129.8, 131.6 (aromatic CH), 132.8, 134.2, 137.0, 138.5 (quat. olefinic and aromatic); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 1719$ ($\mathrm{C}=\mathrm{O}$, ester); m / z (FAB) $269(\mathrm{M}+1,52 \%), 240$ (10), 239 (22), 181 (100), 179 (21), 178 (25), 166 (16), 165 (16); and (b) 3-meth-oxycarbonyl-1,3a,4,5,6,10b-hexahydrobenzo[$g]$ cyclopenta $[e]$ indazole $20\left(0.15 \mathrm{~g}, 59^{\circ}\right), \mathrm{mp} 147-149^{\circ} \mathrm{C}$ (hexane-ethanol) as a colourless solid (Found: C, 71.4; H, 6.2; N, 10.4\%; (M + 1) ${ }^{+}$, 269.1286. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 10.4 \%$; $\left.(\mathrm{M}+1)^{+}, 269.1290\right) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.87-2.01 (m, 2 H , $\left.\mathrm{CH}_{2}\right), 2.35-2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53-2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73-$ $2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, $J 11.1$), 4.96 (dd, $1 \mathrm{H}, \mathrm{CH}, J 10.6$ and 3.3), 6.29 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.11-7.33 (m, 4 H , aromatic CH); $\delta_{\mathrm{C}}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.0$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 43.9(\mathrm{CH}), 52.1\left(\mathrm{OCH}_{3}\right), 65.9$ $(\mathrm{CH}), 124.1,126.5,128.4,128.9$ (aromatic CH), 129.3, 131.9, 132.1, 134.6, 144.0 (quat. olefinic and aromatic); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1706$ (C=O, ester); m / z (FAB) 269 (M + 1, 45%), 237 (59), 235 (57), 181 (37), 168 (34), 167 (100), 152 (20).
($\boldsymbol{E}, \boldsymbol{E}$)-2-(1-Methyl-2,4-diphenylbuta-1,3-dienyl)phenyldiazo-
methane 7f. (i) At room temperature. The sodium salt of the p-tosylhydrazone $\mathbf{1 7 f}(0.4 \mathrm{~g}, 0.81 \mathrm{mmol})$ was prepared and dried as above. Its solution in dry DME ($50 \mathrm{~cm}^{3}$) was stirred under nitrogen at room temperature for 48 h . The usual work up gave (E, E)-2-(1-methyl-2,4-diphenylbuta-1,3-dienyl)phenyldiazomethane $7 \mathrm{f}(0.26 \mathrm{~g}, 94 \%)$ as an orange oil which proved
impossible to purify further; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.75(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J 16.1), 6.63(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}, J 16.1), 7.01-7.53(\mathrm{~m}, 15 \mathrm{H}$, aromatic CH$) ; v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 2060(\mathrm{C}=\mathrm{N}=\mathrm{N})$.
(ii) At $80^{\circ} \mathrm{C}$. A similar procedure was followed using the same amount of the p-tosylhydrazone $\mathbf{1 7 f}$. After standing for 48 h at room temperature the DME solution was heated at reflux for 3 h . The usual work up gave a yellow oil which contained two components (TLC, silica, hexane-ether $90: 10$). MPLC (silica, hexane-ether, $90: 10$) gave (a) 1a,7b-dihydro-3-methyl-1,2-diphenyl-1 H-cyclopropa $[a]$ naphthalene $\mathbf{1 9 f}$ as a $c a$. $1: 3$ mixture of cis and trans isomers ($0.135 \mathrm{~g}, 54 \%$), bp $250^{\circ} \mathrm{C} / 1$ mmHg (Found: $\mathrm{M}^{+}, 308.1572 . \mathrm{C}_{24} \mathrm{H}_{20}$ requires $\mathrm{M}^{+}, 308.1565$); $\delta_{\mathrm{H}} 1.51^{*}(\mathrm{br} \mathrm{t}, \mathrm{CH}, J 4.2), 1.87\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.15^{*}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.54^{*}$ (dd, CH, J 4 and 8.3), 2.69 (br t, CH, J 8.5), 2.83 (br t, CH, $J 9.1$), 2.92* (dd, $1 \mathrm{H}, \mathrm{CH}, J 4.4$ and 8.3), 3.13 (dd, CH, $J 8$ and 9.2), $7.02-5.56(\mathrm{~m}, 14 \mathrm{H}$, aromatic CH$)$; $\delta_{\mathrm{C}} 16.7\left(\mathrm{CH}_{3}\right), 28.2$ $(\mathrm{CH}), 32.9(\mathrm{CH}), 33.0(\mathrm{CH}), 124.7,125.2,125.4,126.1,126.8$, $126.9,127.9,128.2,128.4,129.0$ (aromatic CH), 131.3, 132.5, 134.2, 136.0, 142.1, 142.5 (quat. olefinic and aromatic); m / z (FAB) $309(\mathrm{M}+1,66 \%), 308(54), 294$ (48), 231 (97), 229 (100), 218 (23), 215 (68), 191 (24), 91 (16) (* indicates the major isomer); and (b) 10b-methyl-1,3-diphenyl-1,10b-dihydro-pyrrolo[2,1-a]phthalazine $24 \mathrm{f}(0.055 \mathrm{~g}, 22 \%)$, mp $154-156{ }^{\circ} \mathrm{C}$ (pentane-chloroform) (Found: $(\mathrm{M}+1)^{+}, 337.1700 . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 337.1705\right) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.70(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.91 (d, $1 \mathrm{H}, \mathrm{CH}, J 3.5$), 5.28 (d, $1 \mathrm{H}, \mathrm{CH}, J 3.5$), $6.69-7.75(\mathrm{~m}, 15 \mathrm{H}$, olefinic and aromatic CH$) ; \delta_{\mathrm{C}}(90.55 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 31.1\left(\mathrm{CH}_{3}\right), 60.1(\mathrm{CH}), 66.0$ (quat. carbon), $105.4(\mathrm{CH})$, 124.2, 126.2, 126.5, 127.9, 128.0, 128.1, 128.5, 128.6, 129.2, 132.9 (aromatic CH), 124.3, 131.7, 132.4, 140.3, 146.3 (quat. olefinic and aromatic); $m / z(\mathrm{FAB}) 337(\mathrm{M}+1,100), 336$ (15), 233 (16), 145 (11), 115 (12), 91 (11). The structure of this compound was confirmed by X-ray crystallography (Fig. 3).
(E, E)-2-[1-Methyl-2-phenyl-4-(p-tolyl)buta-1,3-dienyl]phenyldiazomethane 7 g . The sodium salt of the p-tosylhydrazone $\mathbf{1 7 g}$ ($0.75 \mathrm{~g}, 0.79 \mathrm{mmol}$) was prepared and dried as above. Its solution in dry DME $\left(50 \mathrm{~cm}^{3}\right)$ was stirred under nitrogen at room temperature for 48 h and then heated under reflux for 3 h . The usual work up gave a yellow oil shown by TLC to contain two components. MPLC (silica, hexane-ether, 90:10) gave (a) 1a,7b-dihydro-3-methyl-2-phenyl-1-(p-tolyl)-1 H -cyclopropa[a]naphthalene $\mathbf{1 9 g}$ as a ca. 1:2 mixture of cis and trans isomers $(0.24 \mathrm{~g}, 49 \%), \mathrm{bp} 250^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: ($(\mathrm{M}+1)^{+}, 323.1801$. $\mathrm{C}_{25} \mathrm{H}_{22}$ requires $\left.(\mathrm{M}+1)^{+}, 323.1800\right)$; $\delta_{\mathrm{H}} 1.55^{*}($ br t, CH, $J 4.3$), $1.97\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43^{*}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.57^{*}(\mathrm{dd}, \mathrm{CH}$, $J 4.0$ and 8.3), 2.70 (br t, CH, $J 8.2$), 2.82 (br t, CH, $J 9$), 2.93* (dd, CH, J4.0 and 8.3), 3.11 (dd, CH, $J 8.2$ and 9.2), 6.86-7.62 $(\mathrm{m}, 13 \mathrm{H}$, aromatic CH$)$ ($^{*}=$ major component); $\delta_{\mathrm{C}} 16.2\left(\mathrm{CH}_{3}\right)$, $16.4\left(\mathrm{CH}_{3}\right), 17.4(\mathrm{CH}), 20.8(\mathrm{CH}), 20.9(\mathrm{CH}), 26.5\left(\mathrm{CH}_{3}\right), 27.9$ $\left(\mathrm{CH}_{3}\right), 28.0(\mathrm{CH}), 32.6(\mathrm{CH}), 32.8(\mathrm{CH}), 123.8,124.6,125.0$, 125.6, 126.0, 126.4, 126.5, 126.7, 126.8, 127.8, 127.8, 127.9, 128.1, 128.8, 129.0, 129.1, 129.4, 131.0 (aromatic CH), 128.6, $129.6,131.5,132.1,132.2,132.5,134.3,134.6,134.8,136.1$, 139.2, 142.1, 142.9 (quat. olefinic and aromatic); m / z (APCI, $\mathrm{CV}=20) 322.9((\mathrm{M}+1), 100 \%)$; and (b) 10b-methyl-3-phenyl1 -(p-tolyl)-1,10b-dihydropyrrolo[2,1-a]phthalazine $\mathbf{2 4 g}$ as a yellow oil ($0.11 \mathrm{~g}, 21 \%$) (Found: $(\mathrm{M}+1)^{+}, 351.1853 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}$ requires $\left.(\mathrm{M}+1)^{+}, 351.1861\right)$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.61(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.11 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.81 (d, $1 \mathrm{H}, \mathrm{CH}, J 3.3$), 5.19 (d, $1 \mathrm{H}, \mathrm{CH}, J 3.3$), 6.82-7.68 (m, 14 H , aromatic CH); m/z (APCI, CV = 20) $351(\mathrm{M}+1,100 \%)$.

2-[2-(2-Phenylethenyl)cyclohexenyl]phenyldiazomethane 7h. The sodium salt of the p-tosylhydrazone $\mathbf{1 7 h}(0.5 \mathrm{~g}, 1.10$ mmol) was prepared and dried as above. Its solution in dry DME ($50 \mathrm{~cm}^{3}$) was heated at reflux for 4 h . The usual work up gave a pale yellow oil. MPLC (silica, hexane-ether, 90:10) gave a colourless oil which was distilled to give $1 \mathrm{a}, 2,3,4,5,9 \mathrm{~b}-$
hexahydro-1-phenyl-1 H-cyclopropa $[l]$ phenanthrene 19h (0.17 g, 59%), bp $215^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (Found: M^{+}, 272.1531. $\mathrm{C}_{21} \mathrm{H}_{20}$ requires M^{+}, 272.1565); $\delta_{\mathrm{H}} 1.26(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}, J 4.2), 1.59-1.95$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}, J 4.3$ and 8.2$), 2.31-2.60$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$), 2.75 (dd, $1 \mathrm{H}, \mathrm{CH}, J 4.3$ and 8.2), 7.01-7.51 (m, 9 H , aromatic CH); $\delta_{\mathrm{C}} 22.5\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 25.1$ $\left(\mathrm{CH}_{2}\right), 27.2(\mathrm{CH}), 31.5\left(\mathrm{CH}_{2}\right), 32.5(\mathrm{CH}), 32.6(\mathrm{CH}), 122.5$, 122.6, 125.0, 125.2, 125.8, 128.1, 128.2 (aromatic CH), 127.8, 132.1, 133.9, 134.0, 143.2 (quat. olefinic and aromatic); m / z (APCI, CV = 20) 271.9 (M, 100\%).

A similar experiment carried out at room temperature gave multiple products which could not be separated.

The crystal structures of (i) 1,1a,2,3,4,8b-hexahydro-1-phenylcyclopenta [a]cyclopropa [c]naphthalene 19a, (ii) 2,3,4,7-tetra-hydro-4,7-methano-12-phenyl- 1 H -cyclopenta[e][2,3]benzodiazocine 18a, and (iii) 10b-methyl-1,3-diphenyl-1,10bdihydropyrrolo $[2,1-a$] phthalazine $24 f$

Diffraction data were collected in $\omega-\theta$ mode on a Stoe Stadi- 4 diffractometer equipped with an Oxford Cryosystems lowtemperature device using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.
(i) Compound 18a (Fig. 1). Crystal data for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2}$, $M=286.36$, orthorhombic, $a=11.8635(8), b=13.2643(9), c=$ 18.9431(14) $\AA, V=2980.9(4) \AA^{3}$, space group $P b c a, Z=8$, $D_{\mathrm{c}}=1.276 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1216$, yellow rhombic, $0.59 \times 0.35 \times$ $0.27 \mathrm{~mm}^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.579 \mathrm{~mm}^{-1}, 2 \theta$ range for data collection: $5-120^{\circ}$. The structure was solved by direct methods (SHELXS) ${ }^{11}$ and refined by full-matrix least-squares against F^{2} (SHELXL) ${ }^{11}$ with anisotropic displacement parameters for all non-H atoms and H atoms refined with isotropic displacement parameters constrained to 1.2 times that of the atom to which they are bonded. The final $R(F)=4.60 \%$ [based on F and 1987 data with $F>4 \sigma(F)$] and $w R 2=11.61 \%$ (based on F^{2} and all 2181 unique data) for 254 parameters. The final difference map max. and min . were 0.16 and -0.17 e \AA^{-3}.
(ii) Compound 19a (Fig. 2). Crystal data for $\mathrm{C}_{20} \mathrm{H}_{18}$, $M=258.34$, orthorhombic, $a=18.699(2), b=22.045(2), c=$ 6.8983(18) $\AA, ~ V=2843.5 \AA^{3}$, space group Pccn, $Z=8$, $D_{\mathrm{c}}=1.207 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1104$, colourless block, $\mu(\mathrm{Cu}-\mathrm{K} \alpha)=$ $0.51 \mathrm{~mm}^{-1}$, data were collected in the range $5<2 \theta<140^{\circ}$. The structure was solved as described above and refined against F^{2} (SHELXTL) ${ }^{11}$ with H atoms in idealised positions and anisotropic displacement parameters for all non-H atoms. The final $R(F)=5.63 \%$ [based on F and 1209 data with $F>4 \sigma(F)$] and $w R 2=14.52 \%$ (based on F^{2} and all 2090 unique data used for refinement) for 182 parameters. The final difference map max. and min. were 0.17 and -0.18 e \AA^{-3}.
(iii) Compound 24f (Fig. 3). Crystal data for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}$, $M=336.44, \quad$ monoclinic, $\quad a=17.0807(15), \quad b=7.0507, \quad c=$ 16.1161(16) $\AA, \beta=112.113(6)^{\circ}, V=1798.1 \AA^{3}$, space group $P 2_{1} / c, Z=4, D_{\mathrm{c}}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=713.74$, yellow block, $0.47 \times 0.23 \times 0.19 \mathrm{~mm}^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.53 \mathrm{~mm}^{-1}, 2 \theta$ range for data collection: 5-120 (the peak profiles were quite broad, and diffraction was quite weak at high angle). The structure was solved by direct methods (SIR92) ${ }^{12}$ and refined by full-matrix least-squares against F (CRYSTALS) ${ }^{13}$ with H atoms in idealised positions and anisotropic displacement parameters for all non-H atoms. The final $R(F)$ was $4.51 \%, R_{\mathrm{w}}(F)=4.75 \%$ for 236 parameters using 2633 data with $F>4 \sigma(F)$ out of 3184 unique data. The final difference map max. and min. were 0.20 and -0.18 e \AA^{-3}. Atomic coordinates, bond lengths and angles, and thermal parameters for compounds 18a, 19a and $\mathbf{2 4 f}$ have been deposited at the Cambridge Crystallographic Data Centre. CCDC reference number 207/401. See http://www.rsc.org/ suppdata/p1/a9/a909516k for crystallographic files in .cif format.

Acknowledgements

We thank the University of Edinburgh for support (PW) and the EPSRC for funding for a diffractometer.

References

1 J.-P. Strachan, J. T. Sharp and M. C. Crawshaw, J. Chem. Soc., Perkin Trans. 1, 1999, 443.
2 (a) A. Padwa and H. Ku, Tetrahedron Lett., 1980, 21, 1009; (b) A. Padwa and A. Rodriguez, Tetrahedron Lett., 1981, 22, 187; (c) T. Miyashi, Y. Fujii, Y. Nishizawa and T. Mukai, J. Am. Chem. Soc., 1981, 103, 725.
3 D. P. Munro and J. T. Sharp, J. Chem. Soc., Perkin Trans. 1, 1984, 849.

4 (a) Z. Arnold and A. Holy, Collect. Czech. Chem. Commun., 1961, 26, 3059; (b) I. R. Robertson and J. T. Sharp, Tetrahedron, 1984, 40, 3095.

5 C. C. Dudman and C. B. Reese, Synthesis, 1982, 419.

6 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, WileyInterscience, New York, 1984.
7 R. S. Atkinson and C. W. Rees, J. Chem. Soc. (C), 1969, 778.
8 R. S. Atkinson and C. W. Rees, J. Chem. Soc. (C), 1969, 772.
9 (a) R. H. Findlay, J. T. Sharp and P. B. Thorogood, J. Chem. Soc., Perkin Trans. 1, 1975, 102; (b) K. L. M. Stanley, J. Dingwall and J. T. Sharp, J. Chem. Soc., Perkin Trans. 1, 1979, 1433.

10 J. T. Sharp, I. Gosney and A. G. Rowley, Practical Organic Chemistry, a Student Handbook of Techniques, Chapman and Hall, London, 1989, pp. 160 and 163.
11 G. M. Sheldrick, SHELXTL, version 5, Siemens Analytical X-ray Instruments, 1995.
12 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Gaicovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435
13 D. J. Watkin, C. K. Prout, J. R. Carruthers and P. W. Betteridge, CRYSTALS, Issue 10, Chemical Crystallography Laboratory, University of Oxford, 1996.

[^0]: \dagger IUPAC name for propargyl is prop-2-ynyl.

